
DevOps Interview Question

1. What is Source Code Management?

It is a process through which we can store and manage any code. Developers

write code, Testers write test cases and DevOps engineers write scripts. This

code, we can store and manage in Source Code Management. Different teams

can store code simultaneously. It saves all changes separately. We can retrieve

this code at any point of time.

2. What are the Advantages of Source Code Management?

. Helps in Achieving teamwork

. Can work on different features simultaneously

. Acts like pipeline b/w offshore & onshore teams

. Track changes (Minute level)

. Different people from the same team, as well as different teams, can store

code simultaneously (Save all changes separately)

3. Available Source Code Management tools in the market?

There are so many Source Code Management tools available in the market.

Those are

. Git

. SVN

. Perforce

. Clear case

Out of all these tools, Git is the most advanced tool in the market where we

are getting so many advantages compared to other Source Code Management

tools.

3. What is Git?

Git is one of the Source Code Management tools where we can store any type

of code. Git is the most advanced tool in the market now. We also call Git is

version control system because every update stored as a new version. At any

point of time, we can get any previous version. We can go back to previous

versions. Every version will have a unique number. That number we call

commit-ID. By using this commit ID, we can track each change i.e. who did

what at what time. For every version, it takes incremental backup instead of

taking the whole backup. That’s why Git occupies less space. Since it is

occupying less space, it is very fast.

4. What are the advantages of Git?

.Speed:-

Git stores every update in the form of versions. For every version, it takes

incremental backup instead of taking the whole backup. Since it is taking less

space, Git is very fast. That incremental backup we call “Snapshot”

.Parallel branching:-

We can create any number of branches as per our requirement. No need to

take prior permission from any one, unlike other Source Code Management

tools. Branching is for parallel development. Git branches allow us to work

simultaneously on multiple features.

.Fully Distributed:-

A backup copy is available in multiple locations in each and everyone’s server

instead of keeping in one central location, unlike other Source Code

Management tools. So even if we lose data from one server, we can recover it

easily. That’s why we call GIT as DVCS (Distributed Version Control System)

5. What are the stages in Git?

There are total of 4 stages in Git

1. Workspace:-

It is the place where we can create files physically and modify. Being a Git user,

we work in this work space.

2. Staging area/Indexing area:-

In this area, Git takes a snapshot for every version. It is a buffer zone between

workspace and local repository. We can’t see this region because it is virtual.

3. Local repository:-

It is the place where Git stores all commit locally. It is a hidden directory so

that no one can delete it accidentally. Every commit will have unique commit

ID.

4. Central repository:-

It is the place where Git stores all commit centrally. It belongs to everyone who

is working in your project. Git Hub is one of the central repositories. Used for

storing the code and sharing the code to others in the team.

6. What is the common branching strategy in Git?

 Product is the same, so one repo. But different features.

 Each feature has one separate branch

 Finally, merge (code) all branches

 For Parallel development

 Can create any no of branches

 Can create one branch on the basis of another branch

 Changes are personal to that particular branch

 Can put files only in branches (not in repo directly)

 The default branch is “Master”

 Files created in a workspace will be visible in any of the branch

workspaces until you commit. Once you commit, then that file belongs

to that particular branch.

7. How many types of repositories available in Git?

There are two types of repositories available in Git

Bare Repositories (Central)

These repositories are only for Storing & Sharing the code

All central repositories are bare repositories

Non – Bare Repositories (Local)

In these repositories, we can modify the files

All local /user repositories are Bare Repositories

8. Can you elaborate commit in Git?

 Storing file permanently in the local repository we call commit.

 For every commit, we get one commit ID

 It contains 40 long Alpha-numeric characters

 It uses the concept “Check some” (It’s a tool in Linux, generates binary

value equal to the data present in file)

 Even if you change one dot, Commit-ID will get changed

 Helps in tracking the changes

9. What do you mean by “Snapshot” in Git?

 It is a backup copy for each version git stores in a repository.

 Snapshot is an incremental backup copy (only backup for new changes)

 Snapshot represents some data of particular time so that, we can get

data of particular time by taking that particular snapshot

 This snapshot will be taken in Staging area in Git which is present

between Git workspace and Git local repository.

10. What is GitHub?

Git hub is central git repository where we can store code centrally. Git hub

belongs to Microsoft Company. We can create any number of repositories in

Git hub. All public repositories are free and can be accessible by everyone.

Private repositories are not free and can restrict public access for security. We

can copy the repository from one account to other accounts also. This process

we call as “Fork”. In this repository also we can create branches. The default

branch is “Master”

11. What is Git merge?

By default, we get one branch in git local repository called “Master”. We can

create any no of branches for parallel development. We write code for each

feature in each branch so that development happens separately. Finally, we

merge code off all branches in to Master and push to central repository. We

can merge code to any other branch as well. But merging code into master is

standard practice that being followed widely. Sometimes, while merging,

conflict occurs. When same file is in different branches with different code,

when try to merge those branches, conflict occurs. We need to resolve that

conflict manually by rearranging the code.

12. What is Git stash?

We create multiple branches to work simultaneously on multiple features. But

to work on multiple tasks simultaneously in one branch (i.e. on one feature),

we use git stash. Stash is a temporary repository where we can store our

content and bring it back whenever we want to continue with our work with

that stored content. It removes content inside file from working directory and

puts in stashing store and gives clean working directory so that we can start

new work freshly. Later on you can bring back that stashed items to working

directory and can resume your work on that file. Git stash applicable to

modified files. Not new files. Once we finish our work, we can remove all

stashed items form stash repository.

13. What is Git Reset?

Git Reset command is used to remove changes form staging area. This is

bringing back file form staging area to work directory. We use this command

before commit. Often we go with git add accidentally. In this case if we

commit, that file will be committed. Once you commit, commit ID will be

generated and it will be in the knowledge of everyone. So to avoid this one, we

use Git reset.

If you add “–hard” flag to git reset command, in one go, file will be removed

from staging area as well as working directory. We generally go with this one if

we fell that something wrong in the file itself.

15. What is Git Revert?

Git Revert command is used to remove changes from all 3 stages (work

directory, staging area and local repository). We use this command after

commit. Sometimes, we commit accidentally and later on we realize that we

shouldn’t have done that. For this we use Git revert. This operation will

generate new commit ID with some meaningful message to ignore previous

commit where mistake is there. But, here we can’t completely eliminate the

commit where mistake is there. Because Git tracks each and every change.

16. Difference between Git pull and Git clone?

We use these two commands to get changes from central repository. For the

first time if you want whole central repository in your local server, we use git

clone. It brings entire repository to your local server. Next time onwards you

might want only changes instead of whole repository. In this case, we use Git

pull.

Git clone is to get whole copy of central repository

Git pull is to get only new changes from central repository (Incremental data)

17. What is the difference between Git pull and Fetch?

We use Git pull command to get changes from central repository. In this

operation, internally two commands will get executed. One is Git fetch and

another one is Git merge.

Git fetch means, only bringing changes from central repo to local repo. But

these changes will not be integrated to local repo which is there in your server.

Git merge means, merging changes to your local repository which is there in

your server. Then only you can see these changes.

So Git pull is the combination of Git pull and Git merge.

18. What is the difference between Git merge and rebase?

We often use these commands to merge code in multiple branches. Both are

almost same but few differences. When you run Git merge, one new merge

commit will be generated which is having the history of both development

branches. It preserves the history of both branches. By seeing this merge

commit, everyone will come to know that we merged two branches. If you do

Git rebase, commits in new branch will be applied on top of base branch tip.

There won’t be any merge commit here. It appears that you started working in

one single branch form the beginning. This operation will not preserves the

history of new branch.

19. What is Git Bisect?

Git Bisect we use to pick bad commit out of all good commits. Often

developers do some mistakes. For them it is very difficult to pick that commit

where mistake is there. They go with building all commits one by one to pick

bad commit. But Git bisect made their lives easy. Git bisect divides all commits

equally in to two parts (bisecting equally). Now instead of building each

commit, they go with building both parts. Where ever bad commit is there,

that part build will be failed. We do operation many times till we get bad

commit. So Git bisect allows you to find a bad commit out of good commits.

You don’t have to trace down the bad commit by hand; git-bisect will do that

for you.

20. What is Git squash?

To move multiple commits into its parent so that you end up with one commit.

If you repeat this process multiple times, you can reduce “n” number of

commits to a single one. Finally we will end up with only one parent commit.

We use this operation just to reduce number of commits.

21. What is Git hooks?

We often call this as web hooks as well. By default we get some configuration

files when you install git. These files we use to set some permissions and

notification purpose. We have different types of hooks (pre commit hooks &

post commit hooks)

Pre-commit hooks:- Sometimes you would want every member in your team to

follow certain pattern while giving commit message. Then only it should allow

them to commit. These type of restrictions we call pre-commit hooks.

Post-commit hooks:- Sometimes, being a manager you would want an email

notification regarding every commit occurs in a central repository. This kind of

things we call post-commit hooks.

In simple terms, hooks are nothing but scripts to put some restrictions.

22. What is Git cherry-pick?

When you go with git merge, all commits which are there in new development

branch will be merged into current branch where you are. But sometimes,

requirement will be in such that you would want to get only one commit form

development branch instead of merging all commits. In this case we go with git

cherry-pick. Git cherry-pick will pick only one commit whatever you select and

merges with commits which are there in your current branch. So picking

particular commit and merging into your current branch we call git cherry-pick.

23. What is the difference between Git and SVN?

SVN:-

It is centralized version control system (CVCS) where back up copy will be

placed in only one central repository.

There is no branching strategy in SVN. You can’t create branches. So no parallel

development.

There is no local repository. So can’t save anything locally. Every time after

writing code you need to push that code to central repository immediately to

save changes.

Git:-

It is a Distributed version control system where back up copy is available in

everyone’s machine’s local repository as well as a central repository.

We can create any no of branches as we want. So we can go in parallel

development simultaneously.

Every Git repository will have its own local repository. So we can save changes

locally. At the end of our work finally, we can push code to a central repository.

24. What is the commit message in Git?

Every time we commit, while committing, we have to give commit message

just to identify each commit. We can’t remember to commit numbers because

they contain 40 long alphanumeric characters. So, to remember commits

easily, we give commit message. The format of commit message differs from

company to company and individual to individual.

We have one more way to identify commits. That is giving “Tags”. Tag is a kind

of meaningful name to a particular commit. Instead of referring to commit ID,

we can refer to tags. Internally tag will refer to respective commit ID.

These are the ways to get a particular commit easily.

26. What is Configuration Management?

It is a method through we automate admin tasks. Each and every minute

details of a system, we call configuration details. If we do any change here

means we are changing the configuration of a machine. That means we are

managing the configuration of the machine. System administrators used to

manage the configuration of machine through manually. DevOps engineers are

managing this configuration through automated way by using some tools

which are available in the market. That’s why we call these tools as

configuration management tools.

27. What is IAC?

IAC means Infrastructure As Code. It is the process through which we

automate all admin tasks. Here we write code in Ruby script in chef. When you

apply this code, automatically code will be converted into Infrastructure. So

here we are getting so many advantages in writing the code. Those are

1. Code is Testable (Testing code is easy compare to Infrastructure)

2. Code is Repeatable (Can re-use the same code again and again)

3. Code is Versionable (Can store in versions so that can get any previous

versions at any time)

28. What do you mean by IT Infrastructure??

IT Infrastructure is a composite of the following things

 Software

 Network

 People

 Process

29. What are the problems that system admins used to face earlier when there

were no configuration management tools?

1. Managing users & Groups is big hectic thing (create users and groups,

delete, edit……)

2. Dealing with packages (Installing, Upgrading & Uninstalling)

3. Taking backups on regular basis manually

4. Deploying all kinds of applications in servers

5. Configure services (Starting, stopping and restarting services)

These are some problems that system administrators used to face earlier in

their manual process of managing configuration of any machine.

30. Why should we go with Configuration Management Tool?

1. By using the Configuration Management Tool, we can automate almost each

and every admin task.

2. We can increase uptime so that can provide maximum user satisfaction.

3. Improve the performance of systems.

4. Ensure compliance

5. Prevent errors as tools won’t do any errors

6. Reduce cost (Buy tool once and use 24/7)

31. How this Configuration Management Tool works?

Whatever system admins (Linux/windows) used to do manually, now we are

automating all those tasks by using any Configuration Management Tool. We

can use this tool whether your servers are in on-premises or in the cloud. It

turns your code into infrastructure. So your code is versionable, repeatable

and testable. You only need to tell what the desired configuration should be,

not how to achieve it. Through automation, we get our desired state of server.

This is unique feature of Configuration Management Tool.

32. What is the architecture of Chef?

Chef is an administration tool. In this we have total 3 stages.

1. Chef Workstation (It is the place where we write code)

2. Chef Server (It is the place where we store code)

3. Chef Node (It is the place where we apply code)

We need to establish communication among workstation, server and nodes.

You can have any no of nodes. There is no limit. Chef can manage any no of

nodes effectively.

33. Components of Chef?

Chef Workstation: Where you write the code

Chef Server: Where you upload the code

Chef Node: Where you apply the code

Knife: Tool to establish communication among workstation, server & node.

Chef-client: Tool runs on every chef node to pull code from chef server

Ohai: Maintains current state information of chef node (System Discovery

Tool)

Idempotency: Tracking the state of system resources to ensure that the

changes should not re-apply repeatedly.

Chef Supermarket: Where you get custom code

34. How does Chef Works?

We need to install chef package in workstation, server and nodes. We create

cookbook in workstation. Inside cookbook, there will be a default recipe where

you write code in ruby script. You can create any no of recipes. There is no

limit. After writing code in recipe, we upload whole cookbook to chef server.

Chef server acts as central hub storing code. Then, we need to add this

cookbook’s recipe to nodes run-list. Chef-client tool will be there in each and

every chef node. It runs frequently. Chef-client comes to chef server and take

that code and applies that code in node. This is how code will be converted

into infrastructure.

35. What is Idempotency?

It is unique feature in all configuration management tools. It ensures that

changes should not re-apply repeatedly. Once chef-client converted code into

Infrastructure, then even chef-client runs again, it will not take any action. It

won’t do the same task again and again. If any new changes are there in that

code, then only chef-client is going to take action. So it doesn’t make any

difference ever if you run chef-client any no of times. So tracking the system

details to not to reapply changes again and again, we call Idempotency.

36. What is Ohai and how does it works??

Ohai we call “System Discovery Tool”. It stores system information. It captures

each and every minute details of system and updates it then and there if any

new changes are there. Whenever chef-client converts code in infrastructure in

node, immediately Ohai store will be updated. Next time onwards, before

chef-client runs, it verifies in Ohai store to know about current state of

information. So chef-client will come to know the current state of server. Then

chef-client acts accordingly. If new changes are there, then only it will take

action. If there are no new changes, then it won’t take any action. Ohai tool

helps in achieving this.

37. How many types of chef server?

Total there are 3 ways through which we can manage chef server.

1. Directly we can take chef server from Chef Company itself. In this case,

everything will be managed by Chef Company. You will get support from chef.

This type of server we call Managed/Hosted chef. This is completely Graphical

User Interface (GUI). It’s not free. We need to pay to Chef Company after

exceeding free tier limit.

2. We can launch one server and we need to install chef server package. It is

completely free package. It’s GUI.

3. We can launch one server and we need to install chef server package. It is

completely free package. It’s CLI (Command Line Interface).

38. What is there inside cookbook??

Below mentioned files and folders will be there inside cookbook when you first

create it

Chefignore: like .gitignore (to ignore files and folders)

Kitchen.yml: for testing of cookbook

Metadata.rb: name, author, version…. etc of cookbook

Readme.md: information about usage of cookbook

Recipe: It is a file where you write code

Spec: for unit test

Test: for integration test

39. What is Attributes concept in chef?

Sometimes we might need to deploy web applications to in nodes and for that

we need to know some host specific details of each server like IP Address, Host

name ….. etc. Because we need to mention that in configuration files of each

server. These files we call as Configuration files. This information will be vary

from system to system. These host specific details that we mention in

Configuration files,we call “Attributes”. Chef-client tool gathers these

Attributes from Ohai store and puts in configuration files. Instead of hard

coding these attributes, we mention as variables so that every time, file will be

updated with latest details of their respective nodes.

40. What is Run-list in Chef?

This is an ordered list of recipes that we are going to apply to nodes. We

mention all recipes in cookbook and then we upload that cookbook to chef

server. Then, we attach all recipes to nodes run-list in sequence order. When

chef-client runs, it applies all recipes to nodes in the same order whatever the

order you mention in run-list. Because sometimes order is important especially

when we deal with dependent recipes.

41. What is bootstrap?

It is the process of adding chef node to chef server or we can call, bringing any

machine into chef environment. In this bootstrapping process total three

action will be performed automatically.

1. Node gets connected to chef server.

2. Chef server will install chef package in chef node.

3. Cookbooks will be applied to chef node.

It is only one time effort. As and when we purchase any new machine in

company, immediately we add that server to chef server. At a time, we can

bootstrap one machine. We can’t bootstrap multiple machines at a time.

42. What is the workflow of Chef?

We connect chef workstation, chef server and chef node with each other. After

that, we create cookbook in chef workstation and inside that cookbook, we

write code in recipe w.r.t. the infrastructure to be created. Then we upload

entire cookbook to chef server and attach that cookbook’s recipe to nodes run-

list. Now we automate chef-client which will be there in all chef nodes. Chef-

client runs frequently towards chef server for new code. So chef-client will get

that code from server and finally applies to chef node. This is how, code is

converted into infrastructure. If no changes are there in code, even if chef-

client runs any no of time, it won’t take any action until it finds some changes

in code. This is what we call Idempotency.

43. How does we connect Chef Workstation to Chef Server?

First we download started kit from chef server. This will be downloaded in the

form of zip file. If we extract this zip file, we will get chef-repo folder. This chef-

repo folder we need to place in chef workstation. Inside chef-repo folder, we

can see total three folders. They are .chef, cookbooks and roles. Out of these

three, .chef folder is responsible to establish communication between chef

server and chef workstation. Because, inside .chef folder, we can see two files.

They are knife.rb and organization.pem. Inside kinfe.rb, there will be the url

(address) of chef server. Because of this url, communication will be established

between chef server and chef workstation. This is how we connect Chef

Workstation to Chef Server.

44. How does the chef-client runs automatically?

By default, chef-client runs manually. So we need to automate this manually.

For this, we use “cron tool” which is the default tool in all Linux machines use

to schedule tasks to be executed automatically at frequent intervals. So in this

“crontab” file, we give chef-client command and we need to set the timing as

per our requirement. Then onwards chef-client runs automatically after every

frequent intervals. It is only one time effort. When we purchase any new

server in company, along with bootstrap, we automate chef-client then and

there.

45. What is chef supermarket?

Chef supermarket is the place where we get custom cookbooks. Every time we

need not to create cookbooks and need not to write code from scratch. We

can go with custom cookbooks which are available in chef supermarket being

provided by chef organization and community. We can download these

cookbooks and modify as per our needs. We get almost each and every

cookbook from chef supermarket. They are safe to use.

46. What is wrapper cookbook?

Either we can download those chef supermarket cookbooks or without

downloading, we can call these supermarket cookbooks during run time so

that every time we get updates automatically for that cookbook if any new

updates are there. Here, we use our own cookbook to call chef supermarket

cookbook. This process of calling cookbook by using another cookbook, we call

wrapper cookbook. Especially, we use this concept to automate chef-client.

47. What is “roles” in chef?

Roles are nothing but a Custom run-list. We create role & upload to chef server

& assign them to nodes. If we have so many nodes, need to add cookbook to

run-list of all those nodes, it is very difficult to attach to all nodes run-list. So,

we create role & attach that role to all those nodes once. Next time onwards,

add cookbook to that role. Automatically, that cookbook will be attached to all

those nodes. So role is one time effort. Instead of adding cookbooks to each &

every node’s run-list always, just create a role & attach that role to nodes.

When we add cookbook to that role, it will be automatically applied to all

nodes those assigned with that role.

48. What is include_recipe in chef?

By default, we can call one recipe at a time in one cookbook. But if you want to

call multiple recipes from same cookbook, we use include_recipe concept.

Here, we take default recipe and we mention all recipes to be called in this

default recipe in an order. If we call default recipe, automatically default recipe

will call all other recipes which are there inside default recipe. By using one

recipe, we can call any no of recipes. This process of calling one recipe by using

other recipe, we call as include_recipe. Here condition is we can call recipes

from same cookbook, but not from different cookbooks.

49. How to deploy a web server by using chef?

package ‘httpd’ do

action :install

end

file ‘/var/www/html/index.html’ do

content ‘Hello Dear Students!!’

action :create

end

service ‘httpd’ do

action [:enable, :start]

end

50. How to write ruby code to create file, directory?

file ‘/myfile’ do

content ‘This is my second file’

action :create

owner ‘root’

group ‘root’

end

directory ‘/mydir’ do

action :create

owner ‘root’

group ‘root’

end

51. How to write ruby code to create user, group and install package?

user ‘user1’ do

action: create

end

group ‘group1’ do

action :create

members ‘user1’

append true

end

package ‘httpd’ do

action: install

end

52. What is container?

The container is like a virtual machine in which we can deploy any type of

applications, soft wares and libraries. It’s a light weight virtual machine which

uses OS in the form of image, which is having less in size compare to traditional

VMware and oracle virtual box OS images. Container word has been taken

from shipping containers. It has everything to run an application.

53. What is virtualization?

Logically dividing big machine into multiple virtual machines so that each

virtual machine acts as new server and we can deploy any kind of applications

in it. For this first we install any virtualization software on top of base OS. This

virtualization software will divide base machine resources in to logical

components. In a simple terms, logically dividing one machine into multiple

machines we call virtualization.

54. What is Docker?

Docker is a tool by using which, we create containers in less time. Docker uses

light weight OS in the form of docker images that we will get from docker hub.

Docker is open source now. It became so popular because of its unique

virtualization concept called “Containerization” which is not there in other

tools. We can use docker in both windows and Linux machines.

55. What do you mean by docker image?

Docker image is light weight OS provided by docker company. We can get any

type of docker image form docker hub. We use these docker images to create

docker containers. This docker images may contain only OS or OS + other soft

wares as well. Each software in docker image, will be stored in the form of

layer. Advantage of using docker images is, we can replicate the same

environment any no of times.

56. What are the ways through which we can create docker images?

There are three ways through which we can create docker images.

1. We can take any type of docker image directly from docker hub being

provided by docker company and docker community.

2. We can create our own docker images form our own docker containers. I.e.

first we create container form base docker image taken form docker hub and

then by going inside container, we install all required soft wares and then

create docker image from our own docker container.

3. We can create docker image form docker file. It is the most preferred way of

creating docker images.

57. What is docker file and why do we use it?

It is a just normal text file with instructions in it to build docker image. It is the

automated way of creating docker images. Once you build docker image,

automatically docker file will be created. In this file, we mention required OS

image and all required soft wares in the form of instructions. Once we build

docker file, back end, docker container will be created and then docker image

will be crated from that container and that container will be destroyed

automatically.

58. Difference between docker and VM Ware?

VM Ware uses complete OS which contains GBs in size. But docker image size

is MBs only. So it takes less size. That’s why it takes less base machine

resources. This docker image is compressed version of OS. The second

advantage of docker is, there is no pre-allocation of RAM. During run time, it

takes RAM as pre requirement from base machine and one’s job is done, it

release RAM. But in VM Ware, pre-allocation of RAM is there and it blocked

whether it uses or not. So need more RAM for base machine if you want to use

VM Ware unlike Docker.

59. What is OS-Lever Virtualization?

It is the unique feature of Docker which is not available in other virtualization

soft wares. Docker takes most of UNIX features form host machine OS and it

only takes extra layers of required OS in the form of docker image. So docker

image contains only extra layers of required OS. For core UNIX kernel, it

depends upon host OS, why because UNIX kernel is same in any of the UNIX

and Linux flavors. In a simple terms, docker takes host OS virtually. That’s why

we call this concept as OS-Lever Virtualization.

60. What is Layered file system/Union file system?

Inside docker container, wheat ever we do, that forms as a new layer. For

instance, creating files, directories, installing packages etc. This is what we call

as layered file system. Each layer takes less space. We can create docker image

form this container. In that docker image also we get all these layers and forms

unity. That’s why we also call Union File System. If we create container out of

docker image, you can able to see all those files, directories and packages. This

is what replication of same environment.

61. What are the benefits of Docker?

 Containerization (OS level virtualization) (No need guest OS)

 No pre-allocation of RAM

 Can replicate same environment

 Less cost

 Less weight (MB’s in size)

 Fast to fire up

 Can run on physical/virtual/cloud

 Can re-use (same image)

 Can create containers in less time

62. List of Docker components?

Docker image: – Contains OS (very small) (almost negligible) + soft wares

Docker Container: – Container like a machine which is created from Docker

image.

Docker file: – Describes steps to create a docker image.

Docker hub/registry: – Stores all docker images publicly.

Docker daemon: – Docker service runs at back end

Above five components we call as Docker components

63. What is Docker workflow?

First we create Docker file by mentioning instructions to build docker image.

Form this Docker image, we are going to create Docker container. This Docker

image we can push to docker hub as well. This image can be pulled by others

to create docker containers. We can create docker images from docker

containers. Like this we can create Docker images form either docker file or

docker containers. We can create docker containers from docker images. This

is the work flow of docker.

64. Sample Docker file instructions?

FROM ubuntu

WORKDIR /tmp

RUN echo “Hello” > /tmp/testfile

ENV myname user1

COPY testfile1 /tmp

ADD test.tar.gz /tmp

65. What is the importance of volumes in Docker?

 Volume is a directory inside your container

 First declare directory as a volume and then share volume

 Even if we stop container, still we can access volume

 Volume will be created in one container

 You can share one volume across any no of containers

 Volume will not be included when you update an image

 Map volumes in two ways

 Share host – container

 Share container – container

66. What do you mean by port mapping in Docker?

Suppose if you want to make any container as web server by installing web

package in it, you need to provide containers IP address to public in order to

access website which is running inside docker container. But Docker containers

don’t have an IP address. So, to address this issue, we have a concept called

Docker port mapping. We map host port with container port and customers

use public IP of host machine. Then their request will be routed from host port

to container’s port and will be loaded web page which is running inside docker

container. This is how we can access website which is running inside container

through port mapping.

67. What is Registry server in Docker?

Registry server is our own docker hub created to store private docker images

instead of storing in public Docker hub. Registry server is one of the docker

containers. We create this Registry server from “registry” image, especially

provided by docker to create private docker hub. We can store any no of

private docker images in this Registry server. We can give access to others, so

that, they also can store their docker images whomever you provide access.

Whenever we want, we can pull these images and can create containers out of

these images.

68. Important docker commands?

1. Docker ps (to see list of running containers)

2. Docker ps -a (to see list of all containers)

3. Docker images (to see list of all images)

4. Docker run (to create docker container)

4. Docker attach (to go inside container)

6. Docker stop (to stop container)

7. Docker start (to start container)

8. Docker commit (to create image out of docker file)

9. Docker rm (to delete container)

10. Docker rmi (to delete image)

69. What is Ansible?

Ansible is one of the configuration Management Tools. It is a method through

we automate system admin tasks. Configuration refers to each and every

minute details of a system. If we do any changes in system means we are

changing the configuration of a machine. That means we are changing the

configuration of the machine. All windows/Linux system administrators

manage the configuration of a machine manually. All DevOps engineers are

managing this configuration automatic way by using some tools which are

available in the market. One such tool is Ansible. That’s why we call Ansible as

configuration management tool.

70. Working process of Ansible?

Here we crate file called playbook and inside playbook we write script in YAML

format to create infrastructure. Once we execute this playbook, automatically

code will be converted into Infrastructure. We call this process as IAC

(Infrastructure as Code). We have open source and enterprise editions of

Ansible. Enterprise edition we call Ansible Tower.

71. The architecture of Ansible?

We create Ansible server by installing Ansible package in it. Python is pre-

requisite to install ansible. We need not to install ansible package in nodes.

Because, communication establishes from server to node through “ssh” client.

By default all Linux machine will have “ssh” client. Server is going to push the

code to nodes that we write in playbooks. So Ansible follows pushing

mechanism.

72. Ansible components?

Server: – It is the place where we create playbooks and write code in YML

format

Node: – It is the place where we apply code to create infrastructure. Server

pushes code to nodes.

Ssh: – It is an agent through ansible server pushes code to nodes.

Setup: – It is a module in ansible which gathers nodes information.

Inventory file:- In this file we keep IP/DNS of nodes.

73. Disadvantages in other SCM (Source Code Management) tools?

 Huge overhead of Infrastructure setup

 Complicated setup

 Pull mechanism

 Lot of learning required

74. Advantages of Ansible over other SCM (Source Code Management) tools?

 Agentless

 Relies on “ssh”

 Uses python

 Push mechanism

75. How does Ansible work?

We give nodes IP addresses in hosts file by creating any group in ansible server

why because, ansible doesn’t recognize individual IP addresses of nodes. We

create playbook and write code in YAML script. The group name we have to

mention in a playbook and then we execute the playbook. By default, playbook

will be executed in all those nodes which are under this group. This is how

ansible converts code into infrastructure.

76. What do you mean by Ad-Hoc commands in Ansible?

These are simple one liner Linux commands we use to meet temporary

requirements without actually saving for later. Here we don’t use ansible

modules. So there, Idempotency will not work with Ad-Hoc commands. If at all

we don’t get required YAML module to write to create infrastructure, then we

go for it. Without using playbooks we can use these Ad-Hoc commands for

temporary purpose.

77. Differences between Chef and Ansible?

 Ansible chef

 Playbook – Recipe

 Module – Resource

 Host – Node

 Setup – Ohai

 Ssh – Knife

 Push-Pull

78. What is Playbook in Ansible?

Playbook is a file where we write YAML script to create infrastructure in nodes.

Here, we use modules to create infrastructure. We create so many sections in

playbook. We mention all modules in task section. You can create any no of

playbooks. There is no limit. Each playbook defines one scenario. All sections

begin with “-” & its attributes & parameters beneath it.

79. Mention some list of sections that we mention in Playbook?

1. Target section

2. Task section

3. Variable section

4. Handler section

80. What is Target section in Ansible playbook?

This is one of the important sections in Playbook. In this section, we mention

the group name which contains either IP addresses or Hostnames of nodes.

When we execute playbook, then code will be pushed too all nodes which are

there in the group that we mention in Target section. We use “all” key word to

refer all groups.

81. What is Task section in Ansible playbook?

This is second most important section in playbook after target section. In this

section, we are going to mention list of all modules. All tasks we mention in

this task section. We can mention any no of modules in one playbook. There is

no limit. If there is only one task, then instead of going with big playbook,

simply we can go with arbitrary command where we can use one module at a

time. If more than one module, then there is no option except going with big

playbook.

82. What is Variable section?

In this section we are going to mention variables. Instead of hard coding, we

can mention as variables so that during runtime it pulls the actual value in

place of key. We have this concept in each and every programming language

and scripting language. We use “vars” key word to use variables.

83. What is Handler section?

All tasks we mention in tasks section. But some tasks where dependency is

there, we should not mention in tasks section. That is not good practice. For

example, installing package is one task and starting service is one more task.

But there is dependency between them. I.e. after installing package only, we

have to start service. Otherwise it throws error. These kind of tasks, we

mention in handler section. In above example, package task we mention in

task section and service task we mention in handler section so that after

installing task only service will be started.

84. What is Dry run in playbook?

Dry run is to test playbook. Before executing playbook in nodes, we can test

whether the code in playbook is written properly or not. Dry run won’t actually

executes playbook, but it shows output as if it executed playbook. Then by

seeing the output, we can come to know whether the playbook is written

properly or not. It checks whether the playbook is formatted correctly or not. It

tests how the playbook is going to behave without running the tasks.

85. Why are we using loops concept in Ansible?

Sometimes we might need to deal with multiple tasks. For instance, Installing

multiple packages, Creating many users, creation many groups..etc. In this

case, mentioning module for every task is complex process. So, to address this

issue, we have a concept of loops. We have to use variables in combination

with loops.

86. Where do we use conditionals in Playbooks?

Sometimes, your nodes could be mixture of different flavors of Linux OS. Linux

commands vary in different Linux operating systems. In this case, we can’t

execute common set of commands in all machines, at the same time, we can’t

execute different commands in each node separately. To address this issue, we

have conditionals concept where commands will be executed based up on

certain condition that we give.

87. What is Ansible vault?

Sometimes, we use sensitive information in playbooks like passwords, keys

…etc. So any one can open these playbooks and get to know about this

sensitive information. So we have to protect our playbooks from being read by

others. So by using Ansible vault, we encrypt playbooks so that, those who

ever is having password, only those can read this information. It is the way of

protecting playbooks by encrypting them.

88. What do you mean by Roles in Ansible?

Adding more & more functionality to the playbooks will make it difficult to

maintain in a single file. To address this issue, we organize playbooks into a

directory structure called “roles”. We create separate file to each section and

we just mention the names of those sections in playbook instead of

mentioning all modules in main playbook. When you call main playbook, main

playbook will call all sections files respectively in the order whatever order you

mention in playbook. So, by using this Roles, we can maintain small playbook

without any complexity.

89. Write a sample playbook to install any package?

— # My First YAML playbook

– hosts: demo

user: ansible

become: yes

connection: ssh

tasks:

– name: Install HTTPD on centos 7

action: yum name=httpd state=installed

90. Write a sample playbook by mentioning variables instead of hard coding?

— # My First YAML playbook

– hosts: demo

user: ansible

become: yes

connection: ssh

vars:

pkgname: httpd

tasks:

– name: Install HTTPD server on centos 7

action: yum name=‘{{pkgname}}’ state=installed

91. What is CI & CD?

CI means Continues Integration and CD means Continues Delivery/Deploy.

Whenever developers write code, we integrate all that code of all developers

at that point of time and we build, test and deliver/deploy to the client. This

process we call CI & CD. Jenkins helps in achieving this. So instead of doing

night builds, build as and when commit occurs by integrating all code in SCM

tool, build, test and checking the quality of that code is what we call Continues

Integration.

92. Key terminology that we use in Jenkins?

Integrate: Combine all code written by developers till some point of time.

Build: Compile the code and make a small executable package.

Test: Test in all environments whether application is working properly or not.

Archived: Stored in an artifactory so that in future we may use/deliver again.

Deliver: Handing the product to Client

Deploy: Installing product in client’s machines.

93. What is Jenkins Workflow?

We attach Git, Maven, Selenium & Artifactory plug-ins to Jenkins. Once

Developers put the code in Git, Jenkins pulls that code and send to Maven for

build. Once build is done, Jenkins pulls that built code and send to selenium for

testing. Once testing is done, then Jenkins will pull that code and send to

Artifactory as per requirement and finally we can deliver the end product to

client we call Continues delivery. We can also deploy with Jenkins into clients

machine directly as per the requirement. This is what Jenkins work flow.

94. What are the ways through which we can do Continues Integration?

are total three ways through which we can do Continues Integration

1. Manually: – Manually write code, then do build manually and then test

manually by writing test cases and deploy manually into clients machine.

2. Scripts: – Can do above process by writing scripts so that these scripts do

CI&CD automatically. But here complexity is, writing script is not so easy.

3. Tool: – Using tools like Jenkins is very handy. Everything is preconfigured in

these type of tools. So less manual intervention. This is the most preferred

way.

95. Benefits of CI?

1. Detects bugs as soon as possible, so that bug will be rectified fast and

development happens fast.

2. Complete automation. No need manual intervention.

3. We can intervene manually whenever we want. I.e. we can stop any stage at

any point of time so have better control.

4. Can establish complete and continues work flow.

96. Why only Jenkins?

 It has so many plug-ins.

 You can write your own plug-in

 You can use community plug-ins

 Jenkins is not just a tool. It is a framework. I.e. you can do what ever you

want. All you need is plug-ins.

 We can attach slaves (nodes) to Jenkins master. It instructs others

(slaves) to do Job. If slaves are not available,

 Jenkins itself does the job.

 Jenkins also acts as crone server replacement. I.e. can do repeated tasks

automatically

 Running some scripts regularly

 E.g.: Automatic daily alarm.

 Can create Labels (Group of slaves) (Can restrict where the project has to

run)

97. What is Jenkins Architecture?

Jenkins architecture is Client-Server model. Where ever, we install Jenkins, we

call that server is Jenkins master. We can create slaves also in Jenkins, so that,

server load will be distributed to slaves. Jenkins master randomly assigns tasks

to slaves. But if you want to restrict any job to run in particular slave, then we

can do it so that, that particular job will be executed in that slave only. We can

group some slaves by using “Label”

98. How to install Jenkins?

 You can install Jenkins in any OS. All OSs supports Jenkins. We access

Jenkins through web page only. That’s why it doesn’t make any

difference whether you install Jenkins in Windows or Linux.

 Choose Long Term Support release version, so that you will get support

from Jenkins community. If you are using Jenkins for testing purpose,

you can choose weekly release. But for production environments, we

prefer Long Term Support release version.

 Need to install JAVA. Java is pre-requisite to install Jenkins.

 Need to install web package. Because, we are going to access Jenkins

through web page only.

99. Does Jenkins open source?

There are two editions in Jenkins

1. Open source

2. Enterprise edition

Open source edition we call Jenkins. Here we get support from community if

we need it.

Enterprise edition we call Hudson. Here Jenkins company will provide support.

100. How many types of configurations in Jenkins?

There are total 3 types of configurations in Jenkins.

1. Global: – Here, whatever configuration changes we do, applicable to whole

Jenkins including jobs as well as nodes. This configuration has high priority.

2. Job: – These configurations applicable to only Jobs. Jobs also we call as

projects or items in Jenkins.

3. Node: – These configurations applicable to only nodes. Also we call Slaves.

These are kind of helpers to Jenkins master to distribute the excessive load.

101. What do you mean by workspace in Jenkins?

The workspace is the location on your computer where Jenkins places all files

related to the Jenkins project. By default each project or job is assigned a

workspace location and it contains Jenkins-specific project metadata,

temporary files like logs and any build artifacts, including transient build files.

Jenkins web page acts like a window through which we are actually doing work

in workspace.

102. List of Jenkins services?

 localhost:8080/restart (to restart Jenkins)

 localhost:8080/stop (to stop Jenkins)

 localhost:8080/start (to start Jenkins)

103. How to create a free style project in Jenkins?

 Create project by giving any name

 Select Free style project

 Click on build

 Select execute windows batch command

 Give any command (echo “Hello Dear Students!!”)

 Select Save

 Click on Build now

 Finally can see Console output

104. What do you mean by Plugins in Jenkins?

 With Jenkins, nearly everything is a plugin and that nearly all

functionality is provided by plugins. You can think of Jenkins as little

more than an executor of plugins.

 Plugins are small libraries that add new abilities to Jenkins and can

provide integration points to other tools.

 Since nearly everything Jenkins does is because of a plugin, Jenkins ships

with a small set of default plugins, some of which can be upgraded

independently of Jenkins

105. How to create Maven Project?

 Select new item

 Copy the git hub maven project link and paste in git section in Jenkins

 Select build

 Click on clean package

 Select save

 Click on Build now

 Verify workspace contents with GitHub sideSee console output

106. How can we Schedule projects?

Sometimes, we might need some jobs to be executed after frequent intervals.

To schedule a job,

 Click on any project

 Click on Configure

 Select on Build triggers

 Click on Build periodically

 Give timing (* * * * *)

 Select Save

 Can see automatic builds every 1 min

 You can manually trigger build as well if you want

107. What do you mean by Upstream and Downstream projects?

We can also call them as linked projects. These are the ways through which,

we connect jobs one with other. In Upstream jobs, first job will trigger second

job after build is over. In Downstream jobs, second job will wait till first job

finishes its build. As and when first job finishes its work, then second job will be

triggered automatically. In Upstream, first job will be active. In Downstream

jobs, second job will be active. We can use any one type to link multiple jobs.

108. What is view in Jenkins?

We can customize view as per our needs. We can modify Jenkins home page.

We can segregate jobs as per the type of jobs like free style jobs and maven

jobs and so on. To create custom view

 Select List of Related Projects

 Select Default views

 Click on All

 Click on + and select Freestyle

 Select List Views

 Select Job filter

 Select required jobs to be segregated

 Now, you can see different view

109. What is User Administration in Jenkins?

In Jenkins, we can create users, groups and can assign limited privileges to

them so that, we can have better control on Jenkins. Users will not install

Jenkins in their machines. They access Jenkins as a user. Here we can’t assign

permissions directly to users. Instead we create “Roles” and assign permissions

to those roles. These roles we attach to users so that users get the permissions

whatever we assign to those roles.

110. What is Global tool configuration in Jenkins?

We install Java, Maven, Git and many other tools in our server. Whenever

Jenkins need those tools, by default Jenkins will install them automatically

every time. But it’s not a good practice. That’s why we give installed path of all

these tools in Jenkins so that whenever Jenkins need them, automatically

Jenkins pull them form local machine instead of downloading every time. This

way of giving path of these tools in Jenkins we call “Global tool configuration”

111. What is Build?

Build means, Compile the source code, assembling of all class files and finally

creating deliverable

Compile: – Convert Source code into machine-readable format

Assembly (Linking): – Grouping all class files

Deliverable: – .war, .jar

The above process is same for any type of code. This process we call Build.

112. What is Maven?

Maven is one of the Build tools. It is the most advance build tool in the market.

In this, everything is already pre-configured. Maven belongs to Apache

Company. We use maven to build Java code only. We can’t build other codes

by using Maven. By default, we get so many plugins with Maven. You can write

your own plug-in as well. Maven’s local repository is “.M2” where we can get

required compilers and dependencies. Maven’s main configuration file is

“pom.xml” where we keep all instructions to build.

113. Advantages of Maven?

 Automated tasks (Mention all in pom.xml)

 Multiple Tasks at a time

 Quality product

 Minimize bad builds

 Keep history

 Save time – Save money

 Gives set of standards

 Gives define project life cycle (Goals)

 Manage all dependencies

 Uniformity in all projects

 Re-usability

114. List of Build tools available in Market?

 C and C++: Make file

 .Net: Visual studio

 Java: Ant, Maven

115. What is the architecture of Maven?

Main configuration file is pom.xml. For one project, there will be one

workspace and one pom.xml

Requirements for build: –

 Source code (Will be pulled from Git hub)

 Compiler (Pulls from remote repo and then put them in local repo, from

there, maven pulls into Workspace)

 Dependencies (Pulls from remote repo and then put them in local repo,

from there, maven pulls into Workspace)

116. What is Maven’s Build Life Cycle?

In maven, we have different goals. These are

 Generate resources (Dependencies)

 Compile code

 Unit test

 Package (Build)

 Install (in to local repo & artifactory)

 Deploy (to servers)

 Clean (delete all run time files)

117. What does POM.XML contains?

POM.XML is maven’s main configuration file where we keep all details related

to project. It contains

 Metadata about that project

 Dependencies required to build the project

 The kind of project

 Kind of output you want (.jar, .war)

 Description about that project

118. What is Multi-Module Project in Maven?

 Dividing big project into small modules, we call Multi Module Project.

 Each module must have its own SRC folder & pom.xml so that build will

happen separately

 To build all modules with one command, there should be a parent

pom.xml file. This calls all child pom.xml files automatically

 In parent pom.xml file, need to mention the child pom.xml files in an

order.

119. What is Nagios?

Nagios is one of the monitoring tools. By using Nagios we can monitor and give

alerts. Where ever you install Nagios that becomes Nagios server. Monitoring

is important, because we need to make sure that our servers should never go

down. If at all in some exceptional cases server goes down, immediately we

need alert in the form of intimation so that we can take required action to

bring the server up immediately. So for this purpose, we use Nagios.

120. Why do we have to use Nagios?

There are many advantages in using Nagios

 It is oldest & Latest (every now and then, it is getting upgraded as per

current market requirements)

 Stable (we have been using this since so many years and it is performing

well)

 By default, we get so many Plug-ins

 It is having its own Database

 Nagios is both Monitoring & Alerting tool.

121. How does Nagios works?

 We mention all details in configuration files what data to be collected

from which machine

 Nagios daemon reads those details about what data to be collected

 Daemon use NRPE (Nagios Remote Plug-in Executer) plug-in to collect

data form nodes and stores in its own database

 Finally displays in Nagios dashboard

122. What is the Directory structure of Nagios?

/usr/local/nagios/bin – binary files

/usr/local/nagios/sbin – CGI files (to get web page)

/usr/local/nagios/libexec – plugins

/usr/local/nagios/share – PHP Files

/usr/local/nagios/etc – configuration files

/usr/local/nagios/var – logs

/usr/local/nagios/var/status.dat(file) – database

123. What are the Important Configuration files in Nagios?

Nagios main configuration file is

/usr/local/nagios/etc/nagios.cfg

/usr/local/nagios/etc/objects/localhost.cfg (where we keep hosts information)

/usr/local/nagios/etc/objects/contacts.cfg (whom to be informed (emails))

/usr/local/nagios/etc/objects/timeperiods.cfg (at what time to monitor)

/usr/local/nagios/etc/objects/commands.cfg (plugins to use)

/usr/local/nagios/etc/objects/templates.cfg (sample templates)

	1. What is Source Code Management?
	2. What are the Advantages of Source Code Management?
	3. Available Source Code Management tools in the market?
	3. What is Git?
	4. What are the advantages of Git?
	5. What are the stages in Git?
	7. How many types of repositories available in Git?
	8. Can you elaborate commit in Git?
	9. What do you mean by “Snapshot” in Git?
	10. What is GitHub?
	11. What is Git merge?
	12. What is Git stash?
	13. What is Git Reset?
	15. What is Git Revert?
	16. Difference between Git pull and Git clone?
	17. What is the difference between Git pull and Fetch?
	18. What is the difference between Git merge and rebase?
	19. What is Git Bisect?
	20. What is Git squash?
	21. What is Git hooks?
	22. What is Git cherry-pick?
	23. What is the difference between Git and SVN?
	24. What is the commit message in Git?
	26. What is Configuration Management?
	27. What is IAC?
	28. What do you mean by IT Infrastructure??
	29. What are the problems that system admins used to face earlier when there were no configuration management tools?
	30. Why should we go with Configuration Management Tool?
	32. What is the architecture of Chef?
	33. Components of Chef?
	34. How does Chef Works?
	35. What is Idempotency?
	36. What is Ohai and how does it works??
	37. How many types of chef server?
	38. What is there inside cookbook??
	39. What is Attributes concept in chef?
	40. What is Run-list in Chef?
	41. What is bootstrap?
	42. What is the workflow of Chef?
	43. How does we connect Chef Workstation to Chef Server?
	44. How does the chef-client runs automatically?
	45. What is chef supermarket?
	46. What is wrapper cookbook?
	47. What is “roles” in chef?
	48. What is include_recipe in chef?
	49. How to deploy a web server by using chef?
	50. How to write ruby code to create file, directory?
	51. How to write ruby code to create user, group and install package?
	52. What is container?
	53. What is virtualization?
	54. What is Docker?
	55. What do you mean by docker image?
	56. What are the ways through which we can create docker images?
	57. What is docker file and why do we use it?
	58. Difference between docker and VM Ware?
	59. What is OS-Lever Virtualization?
	60. What is Layered file system/Union file system?
	61. What are the benefits of Docker?
	62. List of Docker components?
	63. What is Docker workflow?
	64. Sample Docker file instructions?
	65. What is the importance of volumes in Docker?
	66. What do you mean by port mapping in Docker?
	67. What is Registry server in Docker?
	68. Important docker commands?
	69. What is Ansible?
	70. Working process of Ansible?
	71. The architecture of Ansible?
	72. Ansible components?
	73. Disadvantages in other SCM (Source Code Management) tools?
	74. Advantages of Ansible over other SCM (Source Code Management) tools?
	75. How does Ansible work?
	76. What do you mean by Ad-Hoc commands in Ansible?
	77. Differences between Chef and Ansible?
	78. What is Playbook in Ansible?
	79. Mention some list of sections that we mention in Playbook?
	80. What is Target section in Ansible playbook?
	81. What is Task section in Ansible playbook?
	82. What is Variable section?
	83. What is Handler section?
	84. What is Dry run in playbook?
	85. Why are we using loops concept in Ansible?
	86. Where do we use conditionals in Playbooks?
	87. What is Ansible vault?
	88. What do you mean by Roles in Ansible?
	89. Write a sample playbook to install any package?
	90. Write a sample playbook by mentioning variables instead of hard coding?
	91. What is CI & CD?
	92. Key terminology that we use in Jenkins?
	93. What is Jenkins Workflow?
	94. What are the ways through which we can do Continues Integration?
	95. Benefits of CI?
	96. Why only Jenkins?
	97. What is Jenkins Architecture?
	98. How to install Jenkins?
	99. Does Jenkins open source?
	100. How many types of configurations in Jenkins?
	101. What do you mean by workspace in Jenkins?
	102. List of Jenkins services?
	103. How to create a free style project in Jenkins?
	104. What do you mean by Plugins in Jenkins?
	105. How to create Maven Project?
	106. How can we Schedule projects?
	107. What do you mean by Upstream and Downstream projects?
	108. What is view in Jenkins?
	109. What is User Administration in Jenkins?
	110. What is Global tool configuration in Jenkins?
	111. What is Build?
	112. What is Maven?
	113. Advantages of Maven?
	114. List of Build tools available in Market?
	115. What is the architecture of Maven?
	116. What is Maven’s Build Life Cycle?
	117. What does POM.XML contains?
	118. What is Multi-Module Project in Maven?
	119. What is Nagios?
	120. Why do we have to use Nagios?
	121. How does Nagios works?
	122. What is the Directory structure of Nagios?
	123. What are the Important Configuration files in Nagios?

